Product Decription:
Before rolling, the prestressing force is applied to the rolling mill, which can offset the deformation of a part of the mill during rolling and improve the rigidity of the rolling mill. This type of mill is called a Prestressed Rolling mill. Applying the prestressing force to the rolling mill makes the rolling mill in the stress state before rolling. When rolling, under the action of rolling force, the working frame of rolling mill and the parts on it must produce elastic deformation. Rolling base elastic deformation is mainly composed of the following parts: elastic elongated frame column, beam bending elasticity, compression pressure screw and nut elastic compression, bearing and bearing elastic, elastic bending and roll elastic flattening. Furthermore, the rigidity of the rolling mill is enhanced and the dimensional accuracy of the rolling product is improved.
In addition, because of the rolling force, the frame produces elastic deformation, and the gap between the parts of the work frame disappears, so that the roll gap value increases at the moment of rolling, so the actual rolling thickness of the workpiece is: h=S+ΔS. In this formula, S is the roll gap value before rolling (no load roller gap), mm; ΔS is the amount of roll gap increase in rolling, mm; referred to as roll gap bounce or roll jump; h is the actual rolling thickness of the rolled piece, mm.
Under the effect of rolling force while in rolling, gap between parts of rolling mill stand will be compressed to disappear firstly. Mill stand and other parts can be considered as a whole when the gap disappears. When the force continues, the deformation of the stand will be consistent with Hooke's law, that is, the elastic deformation of the stand is proportional to the rolling force, inversely proportional to the stiffness coefficient of the mill: in formula ΔS = P / Km, where P is the rolling force, kN; Km is the rigidity coefficient of the mill, kN / mm; ΔS is the total elastic deformation of the rolling mill frame, mm. Obviously, the actual rolling thickness of the rolling mill is related to the stiffness coefficient of the rolling mill. Under the same force, the greater the stiffness coefficient of the rolling mill, the smaller the roll jump, the better the dimensional accuracy of the rolling.